Abstract
The influence of miscibility of an acrylic PSA and several tackifier resin systems upon PSA performance was investigated. When the acrylic copolymer and the resins were blended in various proportions, three types of mixing state were found: miscible system, partially miscible system and immiscible system. In the case of miscible systems, PSA performance (tack, peel strength and shear resistance) depended upon the viscoelastic properties of the PSA. In the case of completely immiscible systems, the above PSA performance depended primarily upon the viscoelastic properties of a continuous matrix phase, and the separated resin phase acted as a kind of filler. In the case of partially miscible systems, the PSA performance changed discontinuously at the resin concentration where phase separation occurred. It suggests that the phase structure of a PSA greatly influences the PSA's performance.